A Grafting Strategy for the Design of Improved G-Quadruplex Aptamers and High-Activity DNAzymes

نویسندگان

  • Tao Li
  • Erkang Wang
  • Shaojun Dong
چکیده

Nucleic acid aptamers are generally obtained by in vitro selection. Some have G-rich consensus sequences with ability to fold into the four-stranded structures known as G-quadruplexes. A few G-quadruplex aptamers have proven to bind hemin to form a new class of DNAzyme with the peroxidase-like activity, which can be significantly promoted by appending an appropriate base-pairing duplex onto the G-quadruplex structures of aptamers. Knowing the structural role of base pairing, here we introduce a novel grafting strategy for the design of improved G-quadruplex aptamers and high-activity DNAzymes. To demonstrate this strategy, three existing G-quadruplex aptamers are chosen as the first generation. A base-pairing DNA duplex is grafted onto the G-quadruplex motif of the first generation aptamers. Consequently, three new aptamers with the quadruplex/duplex DNA structures are produced as the second generation. The hemin-binding affinities and DNAzyme functions of the second generation aptamers are characterized and compared with the first generation. The results indicate three G-quadruplex aptamers obtained by the grafting strategy have more excellent properties than the corresponding original aptamers. Our findings suggest that, if the structures and functions of existing aptamers are thoroughly known, the grafting strategy can be facilely utilized to improve the aptamer properties and thereby producing better next-generation aptamers. This provides a simple but effective approach to the design of nucleic acid aptamers and DNAzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-Quadruplex Forming Oligonucleotides as Anti-HIV Agents.

Though a variety of different non-canonical nucleic acids conformations have been recognized, G-quadruplex structures are probably the structural motifs most commonly found within known oligonucleotide-based aptamers. This could be ascribed to several factors, as their large conformational diversity, marked responsiveness of their folding/unfolding processes to external stimuli, high structural...

متن کامل

Ultrasensitive colorimetric detection of circulating tumor DNA using hybridization chain reaction and the pivot of triplex DNA

This work presents an amplified colorimetric biosensor for circulating tumor DNA (ctDNA), which associates the hybridization chain reaction (HCR) amplification with G-Quadruplex DNAzymes activity through triplex DNA formation. In the presence of ctDNA, HCR occurs. The resulting HCR products are specially recognized by one sequence to include one GGG repeat and the other containing three GGG rep...

متن کامل

DNA Nanotubes Coupled with Magnetic Nanoparticles as a Platform for Colorimetric Biosensors

This study describes the fabrication techniques for two forms of magnetic DNA nanotubes (MDNTs) and their applications as platforms for developing colorimetric assays. The first form of MDNTs was DNTs filled-up with magnetic nanoparticles (MNPs) and the second one was DNTs arayed with MNPs on their extrior surfaces. Then the both forms of MDNTs were employed as platforms for attaching a specifi...

متن کامل

G-quadruplex DNA aptamers and their ligands: structure, function and application.

Highly specific and tight-binding nucleic acid aptamers have been selected against a variety of molecular targets for over 20 years. A significant proportion of these oligonucleotides display G-quadruplex structures, particularly for DNA aptamers, that enable molecular recognition of their ligands. G-quadruplex structures couple a common scaffold to varying loop motifs that act in target recogn...

متن کامل

Visual Detection of Bacterial Pathogens via PNA-Based Padlock Probe Assembly and Isothermal Amplification of DNAzymes

We have developed a self-reporting isothermal system for visual bacterial pathogen detection with single base resolution. The new DNA diagnostic is based on combination of peptide nucleic acid (PNA) technology, rolling circle amplification (RCA) and DNAzymes. PNAs are used as exceedingly selective chemical tools that bind genomic DNA at a predetermined sequence under nondenaturing conditions. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009